Telegram Group & Telegram Channel
HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/117
Create:
Last Update:

HNSW [2016] - один из столпов современных рекомендательных систем

В больших системах существуют миллионы вариантов того, что можно порекомендовать пользователю. Это слишком много, чтобы применять ML для оценки релевантности документа, и, чтобы сузить выбор, существует этап кандидатогенерации. Генераторы бывают тупыми - например, какие-нибудь фильтры по ключевым словам, но бывают и умные, основанные на эмбеддингах.

Идея следующая: у нас есть эмбеддинг пользователя u и N эмбеддингов документов d, и мы хотим взять k ближайших к пользователю документов. Проблема в том, для точного ответа на такой запрос нам придётся считать все N расстояний между u и d, но такие вычисления мы не можем себе позволить. Но нам и не нужен точный ответ, подойдут и просто k близких к u векторов. Такая постановка называется "approximate nearest neighbor search". HNSW - это на сегодня топовый способ решения такой задачи.

Navigable Small World (NSW) - одна из двух ключевых компонент, работает так: построим граф из всех документов, соединив рёбрами между собой ограниченное количество ближайших соседей к каждому документу. Когда нам поступает запрос на поиск соседей к какому-то вектору q, мы жадно ходим по графу и идём всегда в вершину, которая ближе всего к q. Когда мы попадаем в "локальный минимум", то считаем его ответом. Такая процедура позволяет не считать все расстояния для каждого q.

HNSW добавляет Hierarchical к выше описанной схеме - мы создаём несколько уровней графа для поиска в разных масштабах. На нижнем уровне находятся все вершины, но с каждым повышением уровня остаётся случайный поднабор вершин, таким образом, делая соседей дальше друг от друга и позволяя прыгать дальше на каждом шаге поиска. Поиск начинается с самого верхнего уровня, и, попадая в тупик, мы спускаемся ниже и продолжаем. Это позволяет сократить количество операций. На картинке иллюстрация работа поиска.

Строится граф чуть сложнее, и для интересующихся оставлю ссылки на материалы: статья с объяснением, видео.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/117

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

How Does Bitcoin Work?

Bitcoin is built on a distributed digital record called a blockchain. As the name implies, blockchain is a linked body of data, made up of units called blocks that contain information about each and every transaction, including date and time, total value, buyer and seller, and a unique identifying code for each exchange. Entries are strung together in chronological order, creating a digital chain of blocks. “Once a block is added to the blockchain, it becomes accessible to anyone who wishes to view it, acting as a public ledger of cryptocurrency transactions,” says Stacey Harris, consultant for Pelicoin, a network of cryptocurrency ATMs. Blockchain is decentralized, which means it’s not controlled by any one organization. “It’s like a Google Doc that anyone can work on,” says Buchi Okoro, CEO and co-founder of African cryptocurrency exchange Quidax. “Nobody owns it, but anyone who has a link can contribute to it. And as different people update it, your copy also gets updated.”

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Knowledge Accumulator from ye


Telegram Knowledge Accumulator
FROM USA